愛媛県知事 加戸 守行 殿

> 四 国 電 力 株 式 会 社 取 締 役 社 長 大 西 淳

伊方発電所第3号機

ウラン・プルトニウム混合酸化物 (MOX)燃料採用計画の事前了解願い

拝啓 時下益々ご清祥のこととお慶び申し上げます。弊社事業につきましては、平素から格別なご高配を賜り厚く御礼申し上げます。

さて、弊社では、資源の有効利用等の観点から、伊方発電所第 3 号機にウラン・プルトニウム混合酸化物(MOX)燃料を添付計画書の通り採用したいと考えております。

つきましては、この計画について、「伊方原子力発電所周辺の安全確保及び 環境保全に関する協定書」第9条に基づく事前了解を賜りたく存じますので、 何卒よろしくお願い申し上げます。

敬具

伊方発電所第3号機 ウラン・プルトニウム混合酸化物(MOX)燃料採用計画書

2 変更する施設 2 伊方発電所第3号機 燃料体

2.変更する理由

使い終わったウラン燃料(使用済燃料)には、運転中に新しく生成した プルトニウムが有用な燃料資源として残っている。再処理によってこのプ ルトニウムを回収し、MOX燃料として原子力発電所で利用すること(プル サーマル)で、原子燃料のリサイクル利用が可能となり、ウラン資源の有 効利用を図ることができる。

また、プルサーマルの着実な推進により我が国の原子燃料サイクルを確立し、将来にわたるエネルギーの安定供給に資することができる。

3.変更の計画

- (1)第3号機取替燃料の一部として、MOX燃料を採用する。なお、今回採用を計画している MOX燃料は、現行燃料と同等の性能を持たせるように設計しており、プルトニウム富化度や燃焼度制限値等の基本仕様は、平成 10年 12月に原子炉設置変更許可を取得した関西電力㈱高浜発電所第3,4号機の MOX燃料と同一である。
- (2) この MOX 燃料は、平成 22 年度までの定期検査時を目途に採用する。
- (3)採用に先立ち、法令に基づく原子炉設置変更許可、工事計画認可等を 取得する。

(説明資料)

伊方発電所第3号機

ウラン・プルトニウム混合酸化物(MOX)燃料の採用計画等について

同時申請案件

伊方発電所第1.2 号機安全保護回路等の変更

伊方発電所第 1,2 号機では、安全保護回路、中央制御盤等を最新のデジタル式に取り替える計画であり、これに関連して安全保護回路の変更等を行う。

伊方発電所第1,2,3 号機放射性廃棄物廃棄施設の変更

伊方発電所第 1,2,3 号機の放射性廃棄物廃棄施設について、これまでの 運用実績等を考慮して、一部設備の共用化・廃止等を行う。

伊方発電所第3号機

ウラン・プルトニウム混合酸化物 (MOX)燃料

原子燃料のリサイクル利用

の採用計画等について

目 次

1 .採用理由	1
2 .MOX 燃料利用の概要	3
3 .MOX 燃料採用の安全性	6
4 MOX燃料の成型加工・輸送	10
5 .採用時期	11
[参考資料 - 1] MOX燃料に係る経緯	12
[参考資料 - 2] MOX燃料の使用実績	13
[参考資料 - 3] MOX燃料採用に係る許認可	14
同時に原子炉設置変更許可申請を行う案件について	
1 .伊方発電所 1,2 号機 安全保護回路等の変更	16
2 .伊方発電所 1,2,3 号機 放射性廃棄物廃棄施設の変更	18

1.採用理由

使い終わったウラン燃料(使用済燃料)には、運転中に新しく生成したプルトニウムが有用な燃料資源として残っている。

今回、伊方発電所 3 号機で採用を計画しているウラン・プルトニウム混合酸化物 (MOX^(*1))燃料は、再処理によってこのプルトニウムを回収して、ウランに混合したものであり、原子燃料としてリサイクル利用するものである。

(1)プルサーマル計画の経緯

MOX 燃料を原子力発電所(軽水炉)で使用することをプルサーマルといい、これについては、原子力開発の初期段階である昭和 36 年の国の「原子力の研究、開発及び利用に関する長期計画」(以下「原子力長計」という。)において、ウランの代替利用として位置付けられ、最新の原子力長計(平成 12 年)に至るまで、プルサーマルを実施することが一貫して国の方針として定められている。

一方、当社を含む電気事業者は、平成9年2月、原子力委員会や閣議において改めて示された原子燃料サイクルの推進方針を受け、2010年(平成22年)までに16~18基のプラントで導入するという全電力大のプルサーマル計画を公表し、現在、その実現に向け取り組んでいる。

なお、最近においても、平成 15 年 8 月に原子力委員会がとりまとめた原子燃料サイクルの全体像である「核燃料サイクルについて」や同年 10 月に閣議決定されたエネルギー基本計画においても、プルサーマルの重要性が再確認されているところである。

当社としては、原子燃料サイクルの重要性を認識し、その一環としてのプルサーマルを伊方発電所 3 号機において 2010 年度までに導入することを目指し、着実に計画を進めていくこととしている。

-

^(*1) MOX: Mixed Oxide

(2)国内外の利用状況等

MOX 燃料は、海外では 40 年以上も前から欧州を中心に利用されており、平成 14 年 12 月末現在で、約 4,000 体の豊富な使用実績があり、既に確立された技術である。

一方、国内においては、MOX 燃料の本格利用に先駆けて、実用炉における MOX 燃料の少数体実証計画として、

- ・日本原子力発電㈱敦賀発電所 1 号機 (BWR^(*1))で昭和 61 年 6 月から平成 2 年 2 月まで 2 体
- ・関西電力㈱美浜発電所 1 号機 (PWR^(*2)) で昭和 63 年 3 月から平成 3 年 12 月 まで 4 体

が、計画どおり順調に使用され、その後の照射後試験においてもその健全性が確認されている。また、MOX 燃料を使用する新型転換炉「ふげん」でも、20 年以上にわたり 700 体以上の使用実績がある。

MOX 燃料は、ウラン燃料に比べて、中性子を吸収しやすいなど原子炉内での特性が若干異なるものの、MOX 燃料の使用割合が炉心全体の約 1/3 までの範囲においては、ウラン燃料と基本的に同じ安全設計・評価が可能であることが、国の原子力安全委員会(平成7年6月)で確認されている。

これらを踏まえて、先行電力である関西電力㈱は、伊方発電所3号機と同じタイプの高浜発電所3,4号機において、MOX燃料採用に係る国の原子炉設置変更許可を平成10年12月に取得している。

(3) 伊方発電所での採用理由

当社は、国の原子燃料サイクル政策を踏まえ、伊方発電所 3 号機で MOX 燃料を採用することにより、再処理で回収したプルトニウムを原子燃料としてリサイクル利用し、ウラン資源の有効利用を図ることができる。

また、これにより、我が国の原子燃料サイクルを確立し、将来にわたるエネルギーの安定供給に資することができる。

以上のことから、MOX 燃料を採用するものである。

(*2) PWR: Pressurized Water Reactor (加圧水型原子炉)

^(*1) BWR: <u>B</u>oiling <u>W</u>ater <u>R</u>eactor (沸騰水型原子炉)

2. MOX 燃料利用の概要

(1) MOX 燃料の概要

MOX 燃料は、ペレット材料としてウラン・プルトニウム混合酸化物を使用するが、それ以外の燃料集合体の基本的な構造(燃料棒配列、形状等)はウラン燃料と同じである。

今回採用を計画している MOX 燃料は、高燃焼度ウラン燃料ステップ 1 (以下、「ステップ 1 燃料」という。)と同等の性能を持たせるように設計しており、プルトニウム富化度(*1)や燃焼度(*2)制限値等の基本仕様は、既に原子炉設置変更許可を取得した関西電力(株)高浜発電所 3.4 号機の MOX 燃料と同一である。

海外で利用されている PWR 用 MOX 燃料の大半 (約 2,000 体)が伊方発電所 3 号機と同じ燃料タイプ (17×17 型)であり、国内でも、美浜発電所 1 号機で少数体の MOX 燃料 (PWR, 14×14 型,4 体)を使用しており、これらの実績から、MOX 燃料の健全性を把握している。

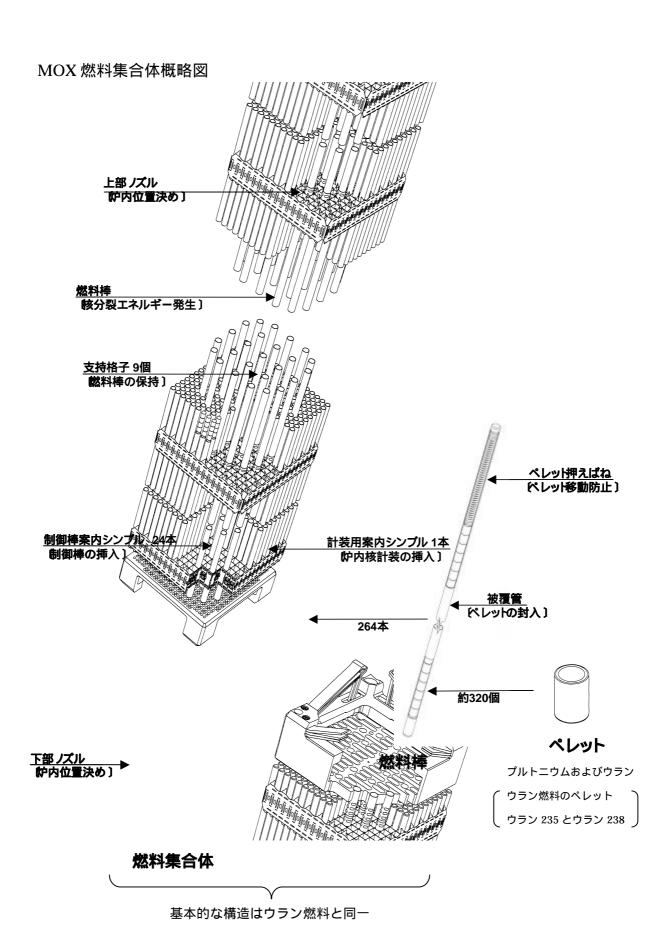
プルトニウム富化度

ペレット中のプルトニウムの割合を示すプルトニウム富化度は、その燃焼能力がステップ 1 燃料 (ウラン濃縮度約 4.1wt%) 相当となるように設定する。

また、MOX 燃料は、燃料集合体外周部の燃料棒出力が高くなる傾向があるため、原子炉内で均等に燃焼するよう、3 種類の富化度の燃料棒を採用し、集合体内で適切に配置する。

燃焼度制限値

MOX 燃料集合体の燃焼度制限値は、ステップ 1 燃料 (燃焼度制限値: 48.000MWd/t) より低めの 45.000MWd/t とする。


MOX 燃料は、集合体内の燃料棒の燃焼度が、ステップ 1 燃料に比べ若干ばらつきが大きくなるため、燃料棒の最高燃焼度がステップ 1 燃料を超えないよう、集合体平均の燃焼度制限値を低く設定する。

(2)原子炉内での MOX 燃料使用体数

MOX 燃料は、定期検査時の取替燃料の一部として、ウラン燃料とともに用いる。原子炉内での MOX 燃料の使用体数は、伊方発電所 3 号機原子炉の全燃料 157 体中 40 体(原子炉内の使用割合:約 1/4)以下とする。これにより、当社は、将来にわたり再処理によって回収されるプルトニウムを余剰なく、計画的にリサイクル利用できる見通しである。

 $^{^{(*1)}}$ MOX 燃料中にどの程度プルトニウムが含まれるかを示したものであり、プルトニウム富化度 = 全プルトニウム量 / (全プルトニウム量 + 全ウラン量)で定義される。

^(*2) 1 トン(t)の燃料 (ウランおよびプルトニウム) がどれくらいの熱量を出したかを示す指標であり、 1,000kW(1MW)の熱量を 1日(d)出し続けた場合の熱の大きさを単位とし、MWd/t で表す。

- 4 -

MOX 燃料の主要仕様

		MOX 燃料	(参考) 高燃焼度ウラン燃料		
			ステップ゜1	ステップ゜2	
		_			
	材料	ウラン・プルトニウム混合酸化物	二酸化ウラン	同左	
	ウラン濃縮度	約 0.2~約 0.4wt%	約 4.1wt%	約 4.8wt%	
	プルトニウム富化度				
~	ペレット最大	13wt%以下	-	-	
レ		(核分裂性プルトニウム富化度:			
ット		8wt%以下)			
	集合体平均	約 4.1wt%ウラン燃料	-	-	
		相当以下			
	プルトニウム組成比	原子炉級(*1)	-	-	
	初期密度	約 95%	同左	約 97%	
		理論密度		理論密度	
	材料	ジルコニウム合金	同左	改良ジルコ	
被				こウム合金	
被覆管	外径	約 9.5mm	同左	同左	
	肉厚	約 0.6mm	同左	同左	
水分长					
燃料	全長	約 3.9m	同左	同左	
棒					
燃	配列	17×17	同左	同左	
燃料集合体	全長	約 4.1m	同左	同左	
集 合	燃料棒数	264 本	同左	同左	
体	燃焼度制限値	45,000	48,000	55,000	
		MWd/t	MWd/t	MWd/t	

^(*1) 原子力発電所で使用された後にでてくる使用済燃料を再処理することにより取り出されたプルトニウムを「原子炉級プルトニウム」と呼ぶ。プルトニウム中に含まれる核分裂性プルトニウムの割合が8割程度までのものをいう。

3. MOX 燃料採用の安全性

(1)原子炉運転中の安全性

MOX 燃料は、ウラン燃料に対して一般的に次のような主な特徴がある。

- ・MOX 燃料中のプルトニウムの量が増加すると、ペレットの融点が低下する。
- ・プルトニウムは中性子を吸収しやすいため、プルトニウムの量が増加すると制御棒や1次冷却水中のほう酸が中性子を吸収する量が相対的に減少する。

しかしながら、

- ・MOX 燃料ペレットのプルトニウム含有量が約 1 割であり、残りの約 9 割はウランであることから、融点等の物性値はウラン燃料から大きく異なることはない。
- ・現行のウラン燃料においてもウラン 238 から生成されたプルトニウムが核分裂して、全体の約 1/3 の発電に寄与しており、MOX 燃料を炉心全体で約 1/4 の割合で使用した場合には、その寄与は約 1/2 に増加するが、原子炉の特性への影響は大きくない。

これらのことは、国の原子力安全委員会が平成7年6月に了承した「発電用軽水型原子炉施設に用いられる混合酸化物燃料について」の報告書においても、MOX燃料の使用割合が炉心全体の約1/3までの範囲では、以下のとおり、ウラン燃料と基本的に同じ安全設計・評価が可能であると確認されている。

(主な検討結果)

- ・MOX 燃料の軽水炉での使用は、海外で実用規模で継続使用されており、相当の実績があること、また、照射後試験により、MOX ペレットおよび燃料棒の照射挙動はウランと同等であることが確認されており、基本的な技術は確立されている。
- ・MOX 燃料は、その基本構造がウラン燃料と同一であるので、燃料被覆管と冷却材間の熱水力特性はウラン燃料と変わらない。また、ウラン燃料との共存性についても問題ない。
- ・MOX 燃料の照射データは採取されており、ウラン燃料で用いている燃料設計 手法に MOX 燃料の特性を取り込むことにより評価可能である。また、MOX 燃料を使用した炉心の核設計についても、プルトニウム富化度分布の影響等を 取り扱えるようにした設計手法により評価可能である。

また、伊方発電所3号機でMOX燃料を採用した場合の評価結果は、以下のとおりであり、その安全性については問題ない。

燃料中心最高温度

MOX 燃料ペレットの融点は、プルトニウム富化度が大きくなるに従って低下するが、燃料中心最高温度は基準値に対して十分余裕がある。

	MOX燃料	(参考) ウラン燃料 (ステップ2燃料)
燃料中心最高温度() (定格出力運転時)	約1,740	約1,740
基準値()	2,500未満	2,580未満

原子炉の制御能力

a . 通常運転時の制御能力

通常運転時に行う原子炉の制御は、ウランやプルトニウムの燃焼による変化など緩やかな変化に対応するものであり、この制御は、中性子を吸収するほう酸の1次冷却水中の濃度を調整することによって行い、制御棒はほとんど引き抜かれた状態である。これらは、MOX燃料を採用しても同じである。

一方、原子炉を停止する際には、ほう酸水、制御棒のいずれでも、100%出力から停止状態まで出力を下げる能力を有している。必要なほう酸水量は、MOX燃料を採用しても、現状のほう酸タンクの容量で対応可能である。

b. 事故時の制御能力

万一の事故が発生した場合、原子炉は制御棒が瞬時に挿入され停止される。 MOX 燃料に制御棒が挿入された場合、制御棒が中性子を吸収する量はウラン 燃料に比べやや減少する傾向になるが、ウラン燃料と MOX 燃料を原子炉内で 適切に配置することにより、万一の事故を想定した安全解析(*1)上の反応度停止 余裕(*2)は、ウラン燃料炉心と同程度に確保できる。

	MOX燃料炉心	(参考) ウラン燃料炉心 (ステップ2燃料)	基準値
反応度停止余裕 (% k/k)	2.48()	2.27	1.8以上

()約 1/4MOX 燃料を使用した典型的な原子炉(平衡炉心)についての解析結果

また、安全解析では、全ての制御棒が挿入され原子炉が停止した状態で発生する事故も想定しており、こうした時には、燃料取替用水タンクに貯蔵しているほう酸水を原子炉に注入して事故を収める。MOX 燃料を採用すると、ほう酸が中性子を吸収する量が減少するが、貯蔵しているほう酸水の濃度を3,400ppm から 4,400ppm に予め高めておくことで対応可能である。

^(*1) 安全解析においては、最大の制御能力をもつ制御棒1体が挿入不可能で、残りのすべての制御棒の能力も9割しかないという保守的な仮定のもとに、原子炉を未臨界にする余裕をどれだけ持っているかを評価している。

なお、実際の運転においては、制御棒が1体でも挿入できなくなった場合には、原子炉を停止することと している。

^(*2) 定格出力運転から制御棒により原子炉を未臨界にする余裕をどれだけ持っているかを示す指標。反応度停止余裕 = 0 (臨界) > 0 (未臨界)

(2)取扱・貯蔵時の安全性

貯蔵設備の未臨界性

MOX 新燃料は、発電所に受け入れた後、使用済燃料ピットで貯蔵する。

MOX 燃料は、ステップ 1 燃料 (ウラン濃縮度約 4.1wt%) 相当の燃焼能力となるように設定しており、使用済燃料ピットは、ウラン濃縮度 5.05wt%の新燃料を貯蔵しても臨界にならないように余裕を持って設計されていることから、現状の設備で問題ない。

取扱・貯蔵設備の遮へい能力

MOX 新燃料は、プルトニウムなどの放射性核種を含み、ウラン新燃料に比べて線量率が高くなるため、発電所への受け入れ時には、遮へい能力を有する専用の取扱設備等を用いて取扱い、使用済燃料ピットに貯蔵する。これにより、作業員の線量を低く抑えることができる。

また、MOX 使用済燃料は、ウラン使用済燃料と同様に、使用済燃料ピットで 貯蔵する。MOX 使用済燃料は、ウラン使用済燃料に比べ、 線の線源強度は低 く、中性子の線源強度は高くなるが、中性子は水中で十分に減衰される。このた め、現状の燃料取扱設備で取扱い、使用済燃料ピットに貯蔵することにより、作 業エリアの線量率は高くなることはない。

貯蔵設備の冷却能力

原子炉内で使用された MOX 燃料は、ウラン燃料に比べ、より高次のアクチニド核種(*1)が多く存在することから、長期的に見た場合、使用済燃料ピットで貯蔵される際の発熱量が、ウラン燃料に比べてやや増加し、このため使用済燃料ピット水温は若干上昇する。

しかし、冷却設備のうちポンプ 1 台が停止した場合等の厳しい条件で評価を行っても、使用済燃料ピット水温は約 58 であり基準値(65)に対して余裕がある。(*2)

発電所における MOX 燃料の安全性については、今後、国の安全審査において、 関係法令、指針等に基づき確認される。

^(*1) 原子番号 90 のトリウムから 103 のローレンシウムまでの元素の総称。一般に、長寿命の放射能を持ち、崩壊するが、重い元素では自発核分裂も行う。MOX 燃料はウラン燃料に比べて燃焼に伴うアメリシウム (原子番号 95) キュリウム(原子番号 96)等高次のアクチニドの増加量が多い。

^(*2) 使用済燃料ピット冷却器 3 基での評価 (平成 18 年度の定期検査において 1 基増設する。)

4. MOX 燃料の成型加工・輸送

国の安全審査を受けた後、MOX 燃料の成型加工・輸送等を行うことになるが、当社は、以下の基本的な方針に基づき、万全を期して取り組んでいく。

(1)成型加工

海外で再処理し回収されているプルトニウムについては、海外の MOX 燃料工場で成型加工し、今後六ヶ所再処理工場から回収されるプルトニウムについては、国内に建設が予定されている MOX 燃料工場で成型加工する計画である。

MOX 燃料の加工にあたっては、BNFL 製 MOX 燃料データ問題により、輸入燃料体検査制度の改善を目的として改正された電気事業法施行規則や国の通達等を遵守し、品質保証活動を確実に実施する。

電気事業法施行規則の改正および国の通達の概要

(電気事業法施行規則)

輸入燃料体検査申請書に「品質保証に関する説明書」を添付する。

(国の通達)

- ・上記「品質保証に関する説明書」において、当面の間、以下の事項を明記する。
 - MOX 燃料加工事業者の評価および監査
 - 品質保証に係る異常事態発生時の処置
 - MOX 燃料工場における検査・試験管理
 - MOX 燃料工場における製造状況および品質保証活動の確認
- ・MOX 燃料の製造開始に先立ち、原子炉設置変更許可を取得し、加工着手前には 輸入燃料体検査申請を行う。

(2)輸送

MOX 燃料の海上輸送にあたっては、国際的な安全基準を満たす専用の輸送船、専用の輸送容器を使用して、万全の安全対策を講じる。また、日米原子力協定など、国際的な核物質防護の要件を十分に満足して実施する。

5.採用時期

MOX 燃料は、原子炉設置変更許可取得後、海外の MOX 燃料工場で成型加工を開始し、平成 22 年度(2010年度)までの伊方発電所 3 号機定期検査時を目途に採用する。

採用スケジュール

年度	平成16	平成17	平成18	平成19	平成20	平成21	平成22
項目	(2004)	(2005)	(2006)	(2007)	(2008)	(2009)	(2010)
原子炉設置変更許可工 事 計 画 認 可							
成型加工・輸送等							
使 用 開 始							3 号機
						_	

以 上

参 考 資 料

[参考資料 - 1]

11 12	13	14	15
	· 7	Г1Щ 	
, 			
			照射データ拡充・評価

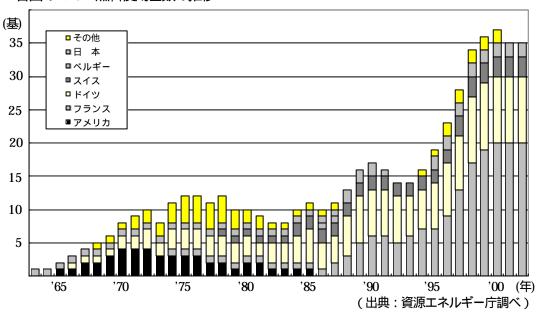
MOX 燃料の使用実績

各国の MOX 燃料使用実績

(平成14年12月末現在)

国 名	プラント数	累積装荷体数	装荷期間
日本	2 基	6 体	1986 ~ 1991
ベルギー	3 基	289 体	1963 ~
フランス	21 基	1,822 体	1974 ~
ドイツ	14 基	1,420 体	1966 ~
インド	2 基	10 体	1994 ~ 2000
イタリア	2 基	70 体	1968 ~ 1981
オランダ	1 基	7 体	1971 ~ 1987
スウェーデン	1 基	3 体	1974 ~ 1979
スイス	3 基	280 体	1978 ~
アメリカ	6 基	91 体	1965 ~ 1985
計	55 基	3,998 体	

(出典:資源エネルギー庁調べ)


新型転換炉「ふげん」の MOX 燃料使用実績

(平成15年3月運転終了時)

国 名	プラント名	累積装荷体数	装荷期間
日本	ふげん	772体	1978 ~ 2003

(出典:サイクル機構技報,2003年9月)

各国の MOX 燃料使用基数の推移

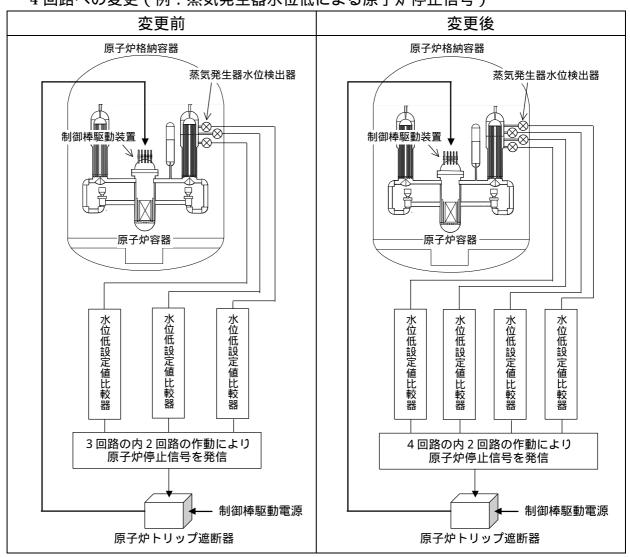
MOX 燃料採用に係る許認可

法令に基づき、国の原子炉設置変更許可、工事計画認可および使用前検査を受ける。 なお、MOX 燃料の海外での成型加工に関しては、国の輸入燃料体検査を受けるととも に、輸送に関しては、国の輸送物設計承認、輸送容器承認を受ける。

項目	主 要 内 容
原子炉設置変更許可 (安全審査)	核原料物質、核燃料物質及び原子炉の規制に関する法律に基づき、原子炉施設の変更の内容について以下の審査を受ける。 ・変更後の設計が、「発電用軽水型原子炉施設に関する安全設計審査指針」「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」および関連指針に適合すること ・変更後の平常運転時における原子炉施設周辺の一般公衆の受ける線量が、「発電用軽水型原子炉施設周辺の線量目標値に関する指針」「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」および関連指針に適合すること ・変更後の原子炉施設が、「発電用軽水型原子炉施設の安全評価に関する審査指針」および関連指針に適合すること
工事計画認可	電気事業法に基づき、工事の計画について以下の審査を受ける。 ・電気工作物が、経済産業省令で定める技術基準に適合しないものでないこと
使用前検査	電気事業法に基づき、以下の検査を受ける。 ・工事が認可を受けた工事の計画に従って行われたものであること ・電気工作物が、経済産業省令で定める技術基準に適合しないものでないこと

項目	主要内容
輸入燃料体検査	電気事業法に基づき、以下の検査を受ける。 ・輸入した燃料体が、経済産業省令で定める技術基準に 適合すること
輸 送 物 設 計 承 認	危険物船舶運送及び貯蔵規則等に基づき、以下の審査を受ける。 ・輸送物が、国土交通省令等で定める技術上の基準に適合すること
輸 送 容 器 承 認	危険物船舶運送及び貯蔵規則等に基づき、以下の検査を受ける。 ・輸送容器が、承認された設計に従って製作されていること

同時に原子炉設置変更許可申請を行う案件について


1. 伊方発電所 1.2 号機 安全保護回路等の変更

1,2 号機では、原子炉の停止信号や非常用炉心冷却設備の作動信号を発生させる制御装置(安全保護回路)と中央制御盤等を最新のデジタル式に取り替える予定であるが、これに伴い、以下の変更を行う。

(1)安全保護回路の変更

安全保護回路は多重化されており、1,2 号機では主に3回路のうち2回路が動作すれば信号を発生させる構成となっている。安全保護回路の取替に際しては、最新の3号機と同様に、4回路のうち2回路が動作すれば信号を発生させる構成に変更し、1回路が点検の場合でも3回路の多重性を確保することで運用性の向上を図る。

4 回路への変更(例:蒸気発生器水位低による原子炉停止信号)

また、これに伴い、安全保護回路の 22 種類の信号の内、以下の 2 種類を 3 号機と同じに変更する。

信号の種類の変更

信号	変更前	変更後
蒸気発生器関連の	「蒸気発生器水位異常低」または	「蒸気発生器水位異常低」
原子炉停止信号	「蒸気発生器蒸気給水流量差大」	
主蒸気ライン隔離	「主蒸気流量異常高と非常用炉心	「主蒸気ライン圧力異常低 」
信号	冷却設備作動の一致」または	または
	「主蒸気流量高と1次冷却材平均	「主蒸気ライン圧力減少率高」
	温度異常低と非常用炉心冷却設	
	備作動の一致」	

(2) 蓄電池の変更

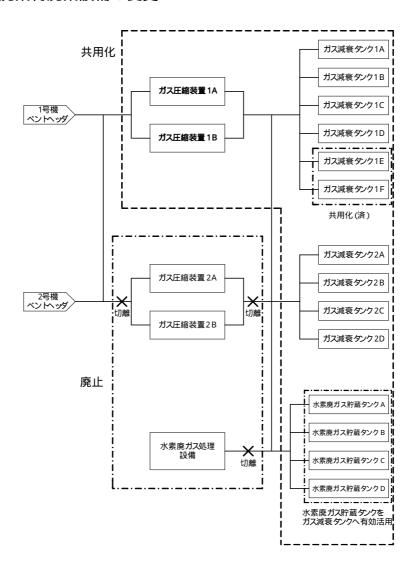
安全保護回路等は電源が喪失した場合でも動作可能なように蓄電池に接続されているが、取り替えに伴い若干負荷が増加するため、蓄電池を増設して余裕を確保する。

(3) 実施時期

安全保護回路や中央制御盤は、1,2 号機とも平成 21 年度に取替工事を行うこととしており、安全保護回路はこれに合わせて変更する。蓄電池は取替工事の開始までに増設することとし、平成 19 年度から平成 20 年度に工事を行う。

2. 伊方発電所 1,2,3 号機 放射性廃棄物廃棄施設の変更

これまでの運用実績等から 1,2,3 号機放射性廃棄物廃棄施設について、一部設備の 共用化・廃止等を行い、設備の効率的な運用等を図る。

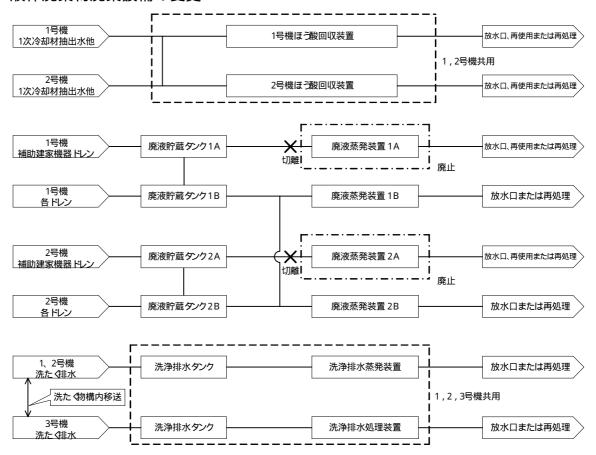

(1) 気体廃棄物廃棄設備の変更について

水素廃ガス処理設備のうち水素廃ガス貯蔵タンクをガス減衰タンクとして有効活用するとともに、既存のガス減衰タンクを 1,2 号機で共用化し、ガス減衰タンクの貯蔵容量を増加させ、放射性希ガスの減衰を図る。

これまでの運用実績から休止状態となっている水素廃ガス処理設備のその他の設備を廃止する。

ガス圧縮装置は、1号機のものを1,2号機での共用として使用する。

気体廃棄物廃棄設備の変更



(2)液体廃棄物廃棄設備の変更について

ほう酸回収装置を1,2号機で共用化する。

これまでの運用実績から、休止状態となっている廃液蒸発装置 1A,2A を廃止する。 1,2 号機と3号機の洗濯物を相互に構内移送して洗浄できるように、1,2 号機と3 号機の洗浄排水処理設備を1,2,3 号機で共用化する。

液体廃棄物廃棄設備の変更

(3) 実施時期

設備の共用化・廃止に必要な工事を平成18年度に実施する。